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Liquid Nobles
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Single phase / Dual phase
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Why liquid nobles?
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Why liquid nobles?
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SNO and Borexino
• SNO: measured deuterium dissociation


— All gammas > 2.2 MeV suppressed.   Th + U chains.

• Borexino: measured 862 keV 7Be neutrinos


— All backgrounds above ~200 keV suppressed.   “Everything”

• Fiducial volume backgrounds extraordinarily low


— Large detectors: Radioactivity (PMTs, SS) far from central volume

— Disolved Rn, and Kr+Ar (Borexino) 

— Borexino internal Rn < 0.57 cnts/

day/100 tons is 1/1000 of pp 
signal at 5 keV.


— SNO somewhat higher, but in 
water.


• Can’t see dark matter: 14C

— Suppressed by 106 in 

petrochemicals, still too high
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Two Phase Detectors
• Alvarez, LBL, suggested LAr/LXe, 1968.  But charge 

multiplication difficult

• Two phase detector developed in Russia - Dolgoshein, 1970

• TPC- Nygren, LBL, late 70s

• LXe, LAr technology developed in Japan, Columbia group 

through 90s.

• LXe for DM- mid 90’s UK, UCLA + others.  ZEPLIN II 

proposal - 98.  Then XENON, 2001 onward.

• LAr - WARP, 2004. From ICARUS. 

39
Ar not considered


• Modern geometry emerged over time

— PMTs inside our outside?  In liquid?  

— Waveshifter?  CsI photocathode with no PMTs?

— Unreasonably high reflectivity of PTFE in LXe not initially recognized

— S2 for nuclear recoils not clearly measured until 2003/4 (XMASS/Case)

— Emerged in ZEPLIN II design, but argument settled with success of XENON10


• Current experiments enabled by low background PMTs - synthetic quartz 
necessary for 175 nm Xe scintillation


— Borexino PMTs - 3x10
6
 mBq/m^2


— Current PMTs (@1mBq) - 200 mBq/m^2.

— LAAPD (EXO) < 0.06 mBq/m^2. 
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Single Phase 
• LXe - UKDM, 1994 - ZEPLIN I.


— PSD, but turns out poor in LXe

• pp Solar Neutrino-inspired 

detectors

— LXe - XMASS, 2000.  Also ßß decay, 

DM

— Ne - McKinsey+Doyle, 1999.  Also 

DM.  Considered PSD, but data 
lacking.


— PSD in LAr: Hime/Boulay 2004 - 
should overcome 39Ar background


• Surfaces very important - Rn 
daughters

• Rayleigh scattering prevents timing-

based position reconstruction.
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Signal production in liquid Xe & Ar
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Nuclear Recoil (NR) Signal    
DD neutrons
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The power of the likelihood ratio method:
● Improvement over the simple fixed value of 1/200 number (99.5%) used in the CDR
● Reduces impact of backgrounds on sensitivity, but must know backgrounds well

• Remarkably, 
discrimination strongest 
at lowest energy


• High discrimination, at 
reduced acceptance

— (Likelihood technique avoids 

explicit choice)
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Pulse Shape Discrimination (PSD) in LAr
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Figure 2. Pulse-shape discrimination and sensitivity with liquid argon. (Left) Discrimination
of β events versus energy for light yields of 4 and 8 photoelectrons per keVee. The higher light
yield improves discrimination by approximately 5× 104 at the 15 keVee threshold. (Right) 90%
exclusion limit for DEAP-3600 with natural and depleted argon. Also shown for reference is the
current XENON-100 exclusion limit [1].
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Figure 3. Results from the DEAP-1 7-kg liquid argon prototype detector at SNOLAB. (Left)
Neutrons (high-Fprompt band) and γ’s (low-Fprompt band) from an untagged Am-Be source.
The boxes show Fprompt regions with 90% detection efficiency, with DEAP-3600 and DEAP-1
thresholds. (Right) Backgrounds in the DEAP-1 prototype. The low-energy “wall” is from γ
backgrounds that are not removed by PSD; high-energy events are from radon and surface
contamination. In the energy region from 25 to 40 keVee, the backgrounds correspond to
approximately 100 µBq/m2.

reduction of 1.25 keVee. Acosta-Kane et al have demonstrated the possibility of argon with
suppressed 39Ar levels [6], and we are working in collaboration with the Princeton group to
obtain depleted argon for DEAP-3600. 90% CL exclusion sensitivities are shown in Fig. 2,
calculated using the standard assumptions outlined in [7] and with a galactic escape velocity of
544 km/s. The increased sensitivity obtained by reducing the threshold using depleted argon is
also shown in Fig. 2; larger increases can be obtained for very low-threshold analyses.

DEAP 
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Reaching the floor
• Floor was noticed - Rubbia, 2004.  Strigari, 2009.

• Bohr/Berra lemma: Predictions are difficult, especially 

about the future.

• Xe, Ar.  My opinion: both can reach neutrino floor.


— Xe discrimination - what is acceptance with deployed light 
collection and field?


— Ar PSD is sufficient. How much does S2/S1 add?  What is best way 
forward on 39Ar?


— Only question of cost.  Can be estimated for LXe

14
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3"""Design"Drivers"for"WIMP"Identification"

Having established the motivation to perform direct searches for WIMP dark matter, we introduced in the 
previous section the proposed configuration of LZ. Searching for events that are rare (≲0.1 per day per 
tonne of target mass) and that involve very small energy transfers (≲100 keV) is extremely challenging. 
This section focuses on the more salient features of the experiment and the detection medium, and how 
these will contribute to the identification of a galactic WIMP signal with low systematic uncertainty. The 
detailed design and its technical implementation are described in later sections; here, we address the key 
requirements that drive the conceptual design and how we propose to address remaining technical 
challenges. 

3.1"""Overview"of"the"Experimental"Strategy"

Xenon has long been recognized as a very attractive WIMP target material [1-3]. Its high atomic mass 
provides a good kinematic match to intermediate WIMP masses of O(100 GeV/c2) and the largest spin-
independent scattering cross section among the available detector technologies, as illustrated in 
Figure 3.1.1. Sensitivity to lighter WIMPs, with masses of O(10 GeV/c2), can be also be achieved, given 
the excellent low-energy scintillation and ionization yields in the liquid phase [4]. Xenon contains neither 
long-lived radioactive isotopes with troublesome decays nor activation products that remain significant 
after the first few months of underground deployment. It is also sensitive to spin-dependent interactions 
via the odd-neutron isotopes 129Xe and 131Xe, which account for approximately half of the natural isotopic 
abundance. If a WIMP discovery were made, the properties of the new particle could be studied by 
altering the isotopic composition of the target. This broad WIMP sensitivity confers maximum discovery 
potential to LZ. 
The liquid phase is preferred over the gas phase due to its high density (3 g/cm3) and high scintillation 
yield, and because its charge quenching of NRs provides a powerful particle ID mechanism. Early 
experiments such as ZEPLIN-I [5] exploited simple pulse shape discrimination (PSD) of the scintillation 

""" "

Figure"3.1.1.""Integrated"rate"above"threshold"per"tonneDyear"of"exposure"for"WIMP"elastic"scattering"on"Xe,"Ge,"

and"Ar"targets"for"50"GeV/c
2
"and"1"TeV/c

2
"WIMP"masses"and"10

O47
"cm

2
"interaction"cross"section"per"nucleon."The"

green"marker"indicates"the"4.3"keV"WIMPOsearch"threshold"in"LUX"with"nominal"ER/NR"discrimination"[4]."

CDMS"II"searched"above"10"keV"in"their"Ge"target;"selected"SuperCDMS"detectors"allowed"a"1.6OkeV"threshold"

with"lower"discrimination"[6]."In"LAr,"the"WARP"(WIMP"Argon"Programme)"2.3Oliter"chamber"achieved"55"keV"

[7],"and"the"DarkSideO50"experiment"has"recently"conducted"a"WIMP"search"above"38"keV"[8]."

50 GeV 1000 GeV
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Faster than Moore
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Plenty of room for discovery
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Post-LHC	Run	2	SUSY… theorists	care
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Baer,	Barger,	and	Serce,	Sept.	2016
arXiv:1609.06735
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Can nobles go low?
• LAr - limited by vanishing PSD at low energy

• LXe - somewhat


— ~5 keVnr S1+S2, limited by light collection.  Factor of ~3 light 
collection on table.


— Lower, with electrons only (Sorenson).   Backgrounds not 
understood.


— Dope LXe with Ne or even He? 

• LHe


— HERON pp neutrino effort in 80s and 90s

— Several modes measurable

— Modern cryodevices enabling - TES and related

— See D. McKinsey’s talk tomorrow
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Combined ßß decay and Dark Matter?
• LXe TPCs for DM and ßß decay superficially very similar, 

so far different in detail

• ßß decay has much more stringent radioactivity goals - 

poorer self-shielding, no discrimination

• DM needs single PE sensitive high efficiency light 

readout, but PMTs too hot.  SiPMs promising.

• Probably makes sense at 50-ton / G3 scale
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